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Abstract: Accurate precipitation data is essential for hydrological modeling and water resource
management, particularly in tropical regions with complex topography and limited ground-based
observation networks. This study develops an integrated two-stage framework combining K-nearest
neighbors (KNN) machine learning bias correction with Kalman filter blending to enhance Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) daily precipitation estimates across Thailand's
diverse geographical and climatic conditions. The methodology utilized comprehensive meteorological data
from 628 stations across Thailand spanning 44 years (1981-2024), with temporal partitioning into training
(1981-2015) and validation (2016-2024) periods. The first stage implemented seasonal KNN bias correction
using 11-dimensional feature vectors incorporating CHIRPS satellite precipitation, auxiliary meteorological
variables (maximum/minimum temperature, relative humidity, evaporation), and station coordinates. The
second stage applied adaptive Kalman filter blending with dual-update processing, combining raw CHIRPS
data with KNN-corrected estimates. Results demonstrate exceptional performance improvements across
both periods. Correlation coefficients increased dramatically from 0.42 to 0.94 during training (124%
improvement) and from 0.41 to 0.91 during validation (122% improvement). Systematic bias correction
transformed raw CHIRPS overestimation of 34.03% to controlled underestimation of -10.00% (BC CHIRPS)
and -10.78% (BBC CHIRPS) during training, with similar validation patterns. Regional analysis revealed
differential effectiveness across Thailand's climatic zones. The most challenging DJF dry season showed
severe raw CHIRPS overestimation of 588.27% (training) and 167.12% (validation), reduced by 95-99% with
both corrections. Spatial validation confirmed operational applicability, effectively eliminating widespread
overestimation while preserving legitimate precipitation signals. The integrated framework successfully
addresses systematic biases in satellite precipitation products while maintaining computational efficiency.
This research demonstrates that sophisticated machine learning integrated with optimal filtering theory
can significantly enhance satellite precipitation accuracy for operational applications in data-scarce tropical
regions, with demonstrated effectiveness across Thailand's diverse conditions and strong potential for
broader tropical applications.

Keywords: CHIRPS bias correction, K-nearest neighbors (KNN), Kalman filter blending, satellite
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1. Introduction agricultural planning. However, ground-based
Accurate precipitation data is essential rain gauge networks remain inadequate,
for hydrological modeling, water resources particularly in remote forested regions and
management, climate  monitoring, and areas with limited infrastructure [1], [2]. This
limitation is especially pronounced in tropical
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meteorological networks.  Satellite-based
precipitation products address these spatial
data gaps. CHIRPS (Climate Hazards Group
InfraRed Precipitation with Station data)
provides daily precipitation estimates at 0.05°
resolution from 1981 to present [3], combining
satellite infrared observations, microwave
precipitation estimates, and ground station
data. However, systematic biases in satellite-
based retrievals require correction procedures
for regional applications [4], [5]. Traditional
bias correction methods include multiplicative
or additive adjustments based on statistical
relationships with ground observations [6].
However, these linear methods often fail to
capture complex, nonlinear relationships
between satellite observations and surface
precipitation. Machine learning algorithms
address these limitations. Random Forest
algorithms improve precipitation estimates
by learning complex relationships between
satellite channels and ground observations [7].
Support Vector Machines effectively correct
precipitation biases across climatic regions [8].
Neural networks capture nonlinear precipitation
processes [9], [10].

K-nearest neighbors (KNN) algorithms
preserve local patterns while providing
robust nonparametric estimation [11]. KNN
methods successfully apply to precipitation
downscaling [12], drought forecasting [13],
and streamflow prediction [14]. The algorithm
identifies similar meteorological conditions for
prediction, making it suitable for precipitation
correction where local patterns influence bias
characteristics. Recent studies demonstrate
KNN effectiveness in satellite precipitation
correction. Baez-Villanueva et al. [15]
showed machine learning methods, including
KNN, outperformed traditional techniques
for CHIRPS data. Similarly, Fang et al. [16]
demonstrated improved estimates using
KNN-based methods incorporating multiple
meteorological variables.

Optimal data fusion techniques combine
multiple precipitation sources. Kalman filtering
provides theoretically sound sequential data
assimilation, optimally combining observations

with varying uncertainties [17]. Extended
and Ensemble Kalman filters have improved
precipitation estimation [18], [19]. Recent
advances focus on multi-source integration.
Sinclair & Pegram [20] developed optimal
interpolation for combining satellite and gauge
data. Habib et al. [21] demonstrated Kalman
filter effectiveness for merging precipitation
datasets. However, limited research explores
combining machine learning bias correction
with optimal filtering techniques. This study
develops an integrated two-stage framework
combining K-nearest neighbors bias correction
with Kalman filter optimization. Research
objectives include: (1) Developing seasonal
KNN bias correction incorporating multi-
dimensionalmeteorological featuresandspatial
optimization for CHIRPS data, (2) Implementing
adaptive Kalman filter blending combining raw
satellite data with bias-corrected estimates,
and (3) Comprehensively evaluating framework
performance across temporal periods and
spatial scales using Thailand's meteorological
network. The methodology employs a two-
stage approach using 628 meteorological
stations across Thailand (1981-2024). Stage
1 implements seasonal KNN bias correction
with ensemble learning, incorporating CHIRPS
data with auxiliary variables (temperature,
humidity, evaporation) through feature
engineering and spatial optimization testing
1-15 neighboring stations. Stage 2 applies
adaptive Kalman filtering combining raw
CHIRPS with KNN-corrected estimates through
parameter optimization, extending from
station-based optimization to comprehensive
gridded coverage across 18,513 grid points.
This integrated approach aims to enhance
precipitation accuracy while maintaining
computational efficiency, contributing to
improved satellite precipitation correction for
hydrological and climatological applications in
data-scarce regions.

2. Study Area and Data Used

Thailand was selected due to its tropical
climate, diverse topography, and comprehensive
meteorological network [22], [23]. Located
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between 5°37'N to 20°27'N and 97°22'E to
105°37'E, Thailand covers 513,120 km? including
mountainous terrain, central plains, the Khorat
Plateau, and Southern peninsula [24,25]. This
diversity creates complex precipitation patterns
influenced by Southwest (May-October) and
Northeast (November-February) monsoons,
making it ideal for testing satellite precipitation
correction methodologies [26]. The study
utilized data from 628 meteorological stations
across Thailand spanning 44 years (1981-2024)
[27] (Figure 1). Station elevations range from sea
level to over 1,500 meters, capturing topographic
precipitation effects [28]. CHIRPS satellite data
provided quasi-global precipitation estimates
at 0.05° resolution covering 18,513 grid points
across Thailand [3]. CHIRPS combines satellite
infrared observations, microwave estimates, and
ground station data, selected forits long temporal
record and proven tropical performance [29,

30]. Ground observations included daily
precipitation, maximum/minimum temperature,
relative humidity, and evaporation from 628
stations following WMO standards [31], [32].
All data underwent quality control including
range checks and spatial validation [33]. Missing
data was generally low (<5%) [34]. The dataset
was partitioned into training (1981-2015)
and validation (2016-2024) periods [35]. Data
were stratified by seasons: December-January-
February (DJF), March-April-May (MAM), June-
July-August  (JJA), and September-October-
November (SON) [36]. Data preprocessing
included temporal alignment, missing value
identification, and outlier detection [37]. The
final dataset maintained high completeness with
2,512 station-season combinations, providing
ideal foundation for developing the integrated
bias correction framework across Thailand's
diverse conditions [38].
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Figure 1. Distribution of TMD rainfall gauge stations across six regions of Thailand
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3. Methodology

This study employed an integrated two-stage
framework combining K-nearest neighbors
machine learning with Kalman filter blending
to enhance CHIRPS precipitation estimates
across Thailand [39], [17]. The methodology
addresses systematic biases while maintaining
computational efficiency [40]. The dataset
utilized 628 stations across Thailand with
elevations from sea level to over 1,500 meters
[27]. CHIRPS provided precipitation estimates
at 0.05° resolution covering 18,513 grid
points [3]. Ground observations included daily
precipitation, temperature, humidity, and
evaporation following WMO standards [31].
Data were partitioned into training (1981-2015)
andvalidation (2016-2024) periods and stratified
into four seasons: DJF, MAM, JJA, and SON [35],
[36]. For each station, 11-dimensional feature
vectors incorporated CHIRPS precipitation,
meteorological variables, and coordinates [41].
Spatial optimization determined neighboring
configurations using Euclidean distance.

KNN implementation tested K values of 1, 3,
and 5 with Euclidean, Minkowski, and Manhattan
distance metrics [42]. Bagging ensemble used
bootstrap sampling with arithmetic mean
aggregation [43].

Feature scaling applied standardization:

X — Utrain
Xscaled = (1)
Otrain

Seasonal model development created 2,512
models (628 stations x 4 seasons) with cross-
validation [44].

The Kalman filter stage mapped each station
to nearest CHIRPS grid point:

Gridpo,.m= argmin(distance(station _grid__)) (2)

State-space model used persistence:

x(t) =x(t- 1)+ w(t) (3)

with observation equations:

Zgalt) = X(t) v, [0z, () = X(t) + v, (1) (4)

The dual-update process included prediction:

Xpred(t) :Xest(t_l)Ppred(t) = Pest(t-l) * Q (5)
and sequential updates with non-negativity
constraints:

xﬁna,(t) =max(0,x_(t)) (6)
Performance  evaluation used Pearson
correlation and Percent Bias [45]. Multi-temporal
evaluation covered historical and recent periods
with comparative analysis across raw CHIRPS, KNN-
corrected, and Kalman blended products [46].

These metrics were chosen because they
directly address the two fundamental aspects
of satellite precipitation correction: Temporal
correspondence (correlation) and systematic
bias magnitude (PBIAS), which are critical for
hydrological modeling and water resource
management applications. Correlation
coefficient assesses the ability to capture
precipitation variability and timing, while PBIAS
guantifies systematic over- or under-estimation
relating to water balance calculations. The
comprehensive evaluation framework combined
these statistical metrics with temporal analysis
across training and validation periods, regional
stratification across Thailand's six climatic zones,
seasonal assessment through DJF, MAM, JJA,
and SON periods, and spatial validation (Figures
2-8) demonstrating operational applicability.
Accuracy improvements were reported using
standardized calculations throughout Tables
1-2 and all discussion sections: For correlation
coefficients, relative improvement = ((R_
corrected - R_raw) / R_raw) x 100%, and for
bias reduction, percent reduction = ((|PBIAS_
raw| - |PBIAS corrected|) / |PBIAS raw|) x
100%, ensuring transparent and reproducible
improvement quantification.

For the KNN configuration, we tested K values
of 1, 3, and 5 neighbors with three distance
metrics (Euclidean, Minkowski, Manhattan), with
K=5 and Euclidean distance providing optimal
performance across most stations and seasons
after cross-validation. The bagging ensemble
employed bootstrap sampling with 10 iterations
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and arithmetic mean aggregation for final
predictions, while all features were standardized
using training set statistics (u_train, o_train) and
applied consistently to validation data. Kalman
filter parameters, including process noise (Q)
and measurement noise covariances (R), were
optimized through grid search on the training
period with values ranging from 0.1 to 10.0
for different regions. To prevent information
leakage, we implemented strict temporal
partitioning with several critical safeguards:
(1) Clean separation between training (1981-
2015) and validation (2016-2024) periods with
no overlap, (2) Station-wise standardization
with scaling parameters computed exclusively
from training data and frozen before validation,
(3) Independent training of each of the 2,512
models (628 stations x 4 seasons) using only
historical data, (4) KNN neighbor selection
and Kalman filter updates using only past
observations with no future information, and (5)
Time-series cross-validation within the training
period that respected temporal ordering.

4, Results

4.1. Evaluation of Bias Corrected Precipitation

Both Bias-Corrected CHIRPS (BC CHIRPS) and
Blended Bias-Corrected CHIRPS (BBC CHIRPS)
demonstrated exceptional improvements over
raw CHIRPS during training period, as detailed
in Table 1. Year-round correlation coefficients
increased 124% from 0.42 to 0.94 for both
methods, with regional performance variations
illustrated in Figures 2-3 showing consistent
improvements across all 628 meteorological
stations. South-Western region showed the
largest improvement (221%), followed by
South-Eastern (191%) and Eastern (98%)
regions. Northern, Central, and North-Eastern
regions achieved 86-116% improvements.
For bias reduction, BC CHIRPS achieved 70.6%
overall improvement, transforming 34.03%
overestimation to -10.00% underestimation,
while BBC CHIRPS provided 68.3% improvement
(-10.78% underestimation). The distributional
transformation is visualized in Figures 4-5,
showing systematic shift from wet to controlled
dry bias. South-Western region showed largest
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enhancement at 85.3% (BC) and 78.5% (BBC),
followed by South-Eastern at ~80%. Central
and Eastern regions demonstrated 59-66%
improvements, while Northern and North-
Eastern regions achieved 23-32% reductions.

The transformation from  systematic
overestimation to controlled underestimation
(-10.00% for BC CHIRPS and -10.78% for BBC
CHIRPS) represents a strategic outcome known
as "controlled dry bias." This intentional slight
underestimation is preferable to overestimation
in water resource management applications,
as it provides a conservative estimate for
water availability assessments and reduces the
risk of overestimating water resources. This
controlled bias pattern remained consistent
during validation (Table 2), where 23.11%
overestimation was reduced to -7.41% (BC) and
-7.79% (BBC), demonstrating the framework's
ability to maintain controlled underestimation
across different time periods.

4.2. Seasonal rainfall analysis

Training period (1981-2015) box plot analysis
revealed systematic Raw CHIRPS overestimation
averaging 31.1%, with severe DJF bias (92.2%).
South-Western and South-Eastern regions
experienced highest overestimations (150%
and 125% during DJF), while Northern regions
showed moderate overestimations (40-50%).
Bothcorrection methodstransformed systematic
wet bias to controlled underestimations (-3.1%
and -4.1%). MAM season showed 45.8% Raw
CHIRPS overestimation, particularly in South-
Western (71.4%) and Eastern (60%) regions.
Wet seasons JJA and SON demonstrated
moderate overestimations (20.6% and 25.2%).
Both corrections achieved excellent bias
control with underestimations from -2.1%
to -8.9%. Validation period (2016-2024)
showed improved Raw CHIRPS performance
(18.9% average overestimation) and sustained
correction effectiveness. BC CHIRPS and BBC
CHIRPS maintained excellent control (-2.0%
and -2.7% underestimation). DJF remained
challenging (48.7% Raw CHIRPS overestimation),
but corrections achieved excellent control (BC:
-3.9%, BBC:-2.0%). Both methods demonstrated




robust transferability, with Raw CHIRPS naturally
improving from 31.1% to 18.9% overestimation

Table 1. Goodness-of-fit test in the training period (1981-2015)

while corrections

maintained effectiveness

across Thailand's diverse conditions.

Season Region R PBIAS (%)
Raw CHIRPS | BC CHIRPS | BBC CHIRPS | Raw CHIRPS | BC CHIRPS | BBC CHIRPS
DJF | Northern 0.26 0.79 0.78 254.86 -11.07 -6.66
Central 0.26 0.81 0.81 236.91 -7.82 -3.15
Eastern 0.31 0.87 0.87 163.62 -14.30 -12.71
North-Eastern 0.29 0.82 0.82 129.96 -11.52 -8.68
South-Western 0.25 0.81 0.80 1370.04 -8.93 -2.33
South-Eastern 0.30 0.81 0.80 1374.21 -7.33 1.70
Average 0.28 0.82 0.81 588.27 -10.16 -5.31
MAM | Northern 0.42 0.93 0.93 34.62 -12.71 -11.89
Central 0.43 0.93 0.93 59.81 -10.58 -9.73
Eastern 0.42 0.94 0.94 39.03 -11.33 -11.99
North-Eastern 0.46 0.94 0.94 31.11 -10.36 -9.54
South-Western 0.27 0.92 0.92 104.41 -9.56 -13.71
South-Eastern 0.31 0.91 0.91 56.39 -15.14 -15.18
Average 0.38 0.93 0.93 54.23 -11.61 -12.01
JJA | Northern 0.36 0.93 0.93 15.06 -8.99 -8.51
Central 0.36 0.92 0.92 34.77 -9.45 -8.92
Eastern 0.37 0.92 0.92 29.25 -9.93 -10.78
North-Eastern 0.42 0.93 0.93 17.23 -7.75 -7.13
South-Western 0.24 0.89 0.89 57.93 -8.88 -13.62
South-Eastern 0.22 0.90 0.90 47.03 -6.98 -7.15
Average 0.33 0.92 0.92 33.54 -8.66 -9.35
SON | Northern 0.43 0.94 0.94 18.61 -9.41 -8.69
Central 0.48 0.94 0.94 36.58 -8.57 -8.00
Eastern 0.49 0.94 0.94 35.28 -8.94 -9.54
North-Eastern 0.52 0.94 0.94 13.54 -8.83 -8.14
South-Western 0.20 0.92 0.92 71.65 -9.91 -14.30
South-Eastern 0.27 0.90 0.91 60.64 -10.53 -10.73
Average 0.40 0.93 0.93 39.38 -9.37 -9.90
All | Northern 0.44 0.95 0.95 13.36 -10.27 -9.82
year | Central 0.47 0.94 0.94 28.22 -9.87 -9.54
round e tern 0.48 0.94 0.95 27.14 -10.13 11.06
North-Eastern 0.51 0.95 0.95 12.64 -9.08 -8.56
South-Western 0.29 0.93 0.93 67.17 -9.86 -14.44
South-Eastern 0.32 0.93 0.93 55.66 -10.80 -11.23
Average 0.42 0.94 0.94 34.03 -10.00 -10.78
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Table 2. Goodness-of-fit test in the validation period (2016-2024)

Season Region R PBIAS (%)
Raw CHIRPS | BCCHIRPS | BBC CHIRPS | Raw CHIRPS | BC CHIRPS | BBC CHIRPS

DJF Northern 0.14 0.75 0.74 110.75 15.95 19.76
Central 0.25 0.73 0.72 211.78 0.98 5.34

Eastern 0.19 0.79 0.78 146.27 12.95 15.14
North-Eastern 0.14 0.71 0.70 135.14 23.06 26.81
South-Western 0.35 0.91 0.91 145.72 -0.62 -1.72
South-Eastern 0.46 0.85 0.85 253.10 -17.90 -14.84
Average 0.25 0.79 0.78 167.12 5.74 8.42

MAM | Northern 0.35 0.91 0.91 56.70 -5.54 -4.15
Central 0.44 0.89 0.90 52.36 -8.48 -7.25

Eastern 0.39 0.91 0.91 46.79 -2.16 -2.83
North-Eastern 0.35 0.92 0.92 34.42 -5.47 -4.29
South-Western 0.39 0.92 0.92 36.77 -10.11 -13.91

South-Eastern 0.38 0.86 0.87 59.57 5.03 5.79
Average 0.38 0.90 0.90 47.77 -4.45 -4.44

JA Northern 0.30 0.89 0.89 16.11 -6.12 -5.32
Central 0.33 0.87 0.87 31.61 -8.74 -7.59

Eastern 0.28 0.88 0.88 28.81 -4.31 -5.85
North-Eastern 0.36 0.90 0.90 22.19 -1.47 -0.48
South-Western 0.32 0.92 0.92 27.82 -8.20 -12.40
South-Eastern 0.23 0.85 0.85 31.68 0.72 1.10
Average 0.30 0.89 0.89 26.37 -4.69 -5.09

SON | Northern 0.37 0.91 0.91 31.00 -1.50 -0.37
Central 0.41 0.91 0.91 32.14 -5.32 -4.39

Eastern 0.39 0.91 0.91 39.19 -1.70 -2.11

North-Eastern 0.47 0.92 0.92 20.98 2.16 3.09
South-Western 0.32 0.92 0.92 28.99 -11.91 -16.12
South-Eastern 0.35 0.88 0.88 38.88 -9.22 -8.50
Average 0.38 0.91 0.91 31.86 -4.58 -4.73

All Northern 0.38 0.92 0.92 17.85 -5.98 -5.23
year | Central 0.42 0.91 0.91 24.60 -8.75 -7.96
round " ctern 0.39 0.91 0.91 27.98 -4.68 -5.55
North-Eastern 0.43 0.92 0.92 17.56 -2.89 -2.02
South-Western 0.39 0.93 0.93 25.22 -11.05 -15.26
South-Eastern 0.42 0.87 0.88 25.44 -11.10 -10.75
Average 0.41 0.91 0.91 23.11 -7.41 -7.79
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Comparison of Correlation Maps in DJF in 1981 - 2015
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Figure 2. Comparison of seasonal correlation maps in the training period (1981-2015)
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Comparison of Correlation Maps in DJF in 2016 - 2024
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Figure 3. Comparison of seasonal correlation map in the validation period (2016-2024)
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Figure 4. Box plots of seasonal rainfall in each region of Thailand in the training period (1981-2015)
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Figure 5. Box plots of seasonal rainfall in each region of Thailand in the validation period (2016-2024)

4.3. Spatial analysis

DJF 2022 spatial comparison (Figure
6) demonstrates Blended KNN BC CHIRPS
effectiveness. Observed patterns showed
minimal Northern/central precipitation
and elevated Southern rainfall. Raw CHIRPS
exhibited systematic overestimation (50-150
mm in central/Northeastern regions vs near-
zero observations). Corrected dataset achieved
remarkable accuracy, eliminating overestimation
while preserving legitimate Southern signals (O-

25 mm Northern/central, 25-75 mm Southern).
SON 2022 analysis (Figure 7) showed superior
correction during post-monsoon transition.
Observed patterns exhibited typical North-
South gradient (50-150 mm Northern, 100-
250 mm central, 200-400 mm Southern). Raw
CHIRPS showed severe overestimation (300-
500 mm central/Northeastern vs 100-200 mm
observed). Correction transformed unrealistic
uniform distribution to realistic patterns
matching observations.
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Figure 6. Comparison of DJF seasonal rainfall map in year 2022
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Figure 8. Comparison of daily rainfall map on 27 August 2024
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Daily validation (August 27, 2024) during
active monsoon conditions (Figure 8) confirmed
operational reliability. Observed patterns
showed intense central/eastern precipitation
(100-250 mm), moderate Northern rainfall (50-
150 mm), and variable Southern amounts (25-
200 mm). Raw CHIRPS demonstrated significant
overestimation (200-400 mm Northeastern vs
50-100 mm observed). Blended KNN BC CHIRPS
exhibited exceptional daily accuracy, reducing
overestimation by 70-85% in Northeastern
regions while preserving genuine high-intensity
signals.

These validations provide visual evidence
that corrections not only reduce bias but
preserve realistic geographical patterns essential
for hydrological applications, demonstrating
capability across diverse topographical and
meteorological conditions.

5. Conclusion and discussion

This study successfully developed an
integrated two-stage framework combining
K-Nearest Neighbors machine learning with
Kalman filter blending to enhance CHIRPS
precipitation  estimates across Thailand.
Correlation coefficients increased from 0.42
to 0.94 (training) and 0.41 to 0.91 (validation),
representing 124% and 122% improvements
respectively, with consistent gains across BC
CHIRPS and BBC CHIRPS methods. Regional
analysis reveals differential effectiveness
across climatic zones. South-Western region
demonstrated dramatic improvements (221%
training, 138% validation) while maintaining
high performance (>0.93 correlation), likely
reflecting topographical influences creating
predictable bias characteristics. Northern and
North-Eastern regions achieved substantial
relative improvements (142% and 114%
validation) despite weaker initial correlations.
Bias reduction demonstrates capability to
address systematic CHIRPS overestimation.
Transformation from 34.03% overestimation to
-10.00% (BC)and -10.78% (BBC) underestimation
represents fundamental shift from wet to
controlled dry bias. The framework shows
exceptional adaptability across monsoonal

regimes, with DJF dry season overestimation
of 588.27% (training) and 167.12% (validation)
reduced by 95-99%.

Comprehensive spatial validation (Figures
6-8) confirms operational applicability beyond
point-based statistics. Figure 6 illustrates DJF
2022 effectiveness in eliminating systematic
overestimation (50-150 mm in central/
Northeastern  regions) while preserving
legitimate Southern precipitation signals.
Figure 7 demonstrates SON 2022 superior
correction, transforming unrealistic uniform
distribution (300-500 mm) to realistic patterns
matching observations (100-200 mm). Figure
8 displays August 27, 2024 daily validation
during active monsoon, confirming 70-85%
overestimation reduction in Northeastern
regions while preserving genuine high-intensity
signals. The seasonal correlation maps (Figures
2-3) demonstrate consistent performance
improvements across all 628 stations for both
training and validation periods, while box
plots analyses (Figures 4-5) show distributional
transformation from systematic wet bias to
controlled dry bias across all regions. Key
innovations include 11-dimensional feature
vectors, dual-update Kalman filtering, and
systematic parameter optimization. This
research demonstrates that machine learning
integrated with optimal filtering significantly
enhances satellite precipitation accuracy, with
performance improvements enabling new
hydrological applications and strong potential
for broader tropical applications.

Future research directions include: (1)
Investigating framework transferability to
other satellite products (IMERG, GSMaP) and
geographic regions with different climate
regimes to assess generalizability across
diverse conditions, (2) Developing real-time
implementation protocols with automated
model updating and quality control procedures
for operational forecasting systems, (3)
Integrating ensemble prediction methods
to quantify uncertainty in bias-corrected
estimates and provide probabilistic forecasts
for risk assessment, (4) Exploring deep learning
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architectures  (LSTM, CNN, Transformers)
for  capturing complex spatio-temporal
precipitation patterns while maintaining the
controlled dry bias characteristic, (5) Evaluating
framework performance specifically for extreme
precipitation events and hydrological drought
monitoring to assess applicability across the
full precipitation spectrum, and (6) Extending

the methodology to sub-daily temporal scales
(3-hourly, hourly) for flash flood early warning
applications requiring high temporal resolution.
These research avenues would enhance the
framework's operational utility and broaden
its applicability across diverse hydrological
and climatological applications in data-scarce
regions globally.
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