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Abstract: Accurate precipitation data is essential for hydrological modeling and water resource 
management, particularly in tropical regions with complex topography and limited ground-based 
observation networks. This study develops an integrated two-stage framework combining K-nearest 
neighbors (KNN) machine learning bias correction with Kalman filter blending to enhance Climate Hazards 
Group InfraRed Precipitation with Station data (CHIRPS) daily precipitation estimates across Thailand's 
diverse geographical and climatic conditions. The methodology utilized comprehensive meteorological data 
from 628 stations across Thailand spanning 44 years (1981-2024), with temporal partitioning into training 
(1981-2015) and validation (2016-2024) periods. The first stage implemented seasonal KNN bias correction 
using 11-dimensional feature vectors incorporating CHIRPS satellite precipitation, auxiliary meteorological 
variables (maximum/minimum temperature, relative humidity, evaporation), and station coordinates. The 
second stage applied adaptive Kalman filter blending with dual-update processing, combining raw CHIRPS 
data with KNN-corrected estimates. Results demonstrate exceptional performance improvements across 
both periods. Correlation coefficients increased dramatically from 0.42 to 0.94 during training (124% 
improvement) and from 0.41 to 0.91 during validation (122% improvement). Systematic bias correction 
transformed raw CHIRPS overestimation of 34.03% to controlled underestimation of -10.00% (BC CHIRPS) 
and -10.78% (BBC CHIRPS) during training, with similar validation patterns. Regional analysis revealed 
differential effectiveness across Thailand's climatic zones. The most challenging DJF dry season showed 
severe raw CHIRPS overestimation of 588.27% (training) and 167.12% (validation), reduced by 95-99% with 
both corrections. Spatial validation confirmed operational applicability, effectively eliminating widespread 
overestimation while preserving legitimate precipitation signals. The integrated framework successfully 
addresses systematic biases in satellite precipitation products while maintaining computational efficiency. 
This research demonstrates that sophisticated machine learning integrated with optimal filtering theory 
can significantly enhance satellite precipitation accuracy for operational applications in data-scarce tropical 
regions, with demonstrated effectiveness across Thailand's diverse conditions and strong potential for 
broader tropical applications.
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1. Introduction
Accurate precipitation data is essential 

for hydrological modeling, water resources 
management, climate monitoring, and 

agricultural planning. However, ground-based 
rain gauge networks remain inadequate, 
particularly in remote forested regions and 
areas with limited infrastructure [1], [2]. This 
limitation is especially pronounced in tropical 
regions where complex topography and 
dense vegetation challenge comprehensive 
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meteorological networks. Satellite-based 
precipitation products address these spatial 
data gaps. CHIRPS (Climate Hazards Group 
InfraRed Precipitation with Station data) 
provides daily precipitation estimates at 0.05° 
resolution from 1981 to present [3], combining 
satellite infrared observations, microwave 
precipitation estimates, and ground station 
data. However, systematic biases in satellite-
based retrievals require correction procedures 
for regional applications [4], [5]. Traditional 
bias correction methods include multiplicative 
or additive adjustments based on statistical 
relationships with ground observations [6]. 
However, these linear methods often fail to 
capture complex, nonlinear relationships 
between satellite observations and surface 
precipitation. Machine learning algorithms 
address these limitations. Random Forest 
algorithms improve precipitation estimates 
by learning complex relationships between 
satellite channels and ground observations [7]. 
Support Vector Machines effectively correct 
precipitation biases across climatic regions [8]. 
Neural networks capture nonlinear precipitation 
processes [9], [10].

K-nearest neighbors (KNN) algorithms 
preserve local patterns while providing 
robust nonparametric estimation [11]. KNN 
methods successfully apply to precipitation 
downscaling [12], drought forecasting [13], 
and streamflow prediction [14]. The algorithm 
identifies similar meteorological conditions for 
prediction, making it suitable for precipitation 
correction where local patterns influence bias 
characteristics. Recent studies demonstrate 
KNN effectiveness in satellite precipitation 
correction. Baez-Villanueva et al. [15] 
showed machine learning methods, including 
KNN, outperformed traditional techniques 
for CHIRPS data. Similarly, Fang et al. [16] 
demonstrated improved estimates using 
KNN-based methods incorporating multiple 
meteorological variables. 

Optimal data fusion techniques combine 
multiple precipitation sources. Kalman filtering 
provides theoretically sound sequential data 
assimilation, optimally combining observations 

with varying uncertainties [17]. Extended 
and Ensemble Kalman filters have improved 
precipitation estimation [18], [19]. Recent 
advances focus on multi-source integration. 
Sinclair & Pegram [20] developed optimal 
interpolation for combining satellite and gauge 
data. Habib et al. [21] demonstrated Kalman 
filter effectiveness for merging precipitation 
datasets. However, limited research explores 
combining machine learning bias correction 
with optimal filtering techniques. This study 
develops an integrated two-stage framework 
combining K-nearest neighbors bias correction 
with Kalman filter optimization. Research 
objectives include: (1) Developing seasonal 
KNN bias correction incorporating multi-
dimensional meteorological features and spatial 
optimization for CHIRPS data, (2) Implementing 
adaptive Kalman filter blending combining raw 
satellite data with bias-corrected estimates, 
and (3) Comprehensively evaluating framework 
performance across temporal periods and 
spatial scales using Thailand's meteorological 
network. The methodology employs a two-
stage approach using 628 meteorological 
stations across Thailand (1981-2024). Stage 
1 implements seasonal KNN bias correction 
with ensemble learning, incorporating CHIRPS 
data with auxiliary variables (temperature, 
humidity, evaporation) through feature 
engineering and spatial optimization testing 
1-15 neighboring stations. Stage 2 applies 
adaptive Kalman filtering combining raw 
CHIRPS with KNN-corrected estimates through 
parameter optimization, extending from 
station-based optimization to comprehensive 
gridded coverage across 18,513 grid points. 
This integrated approach aims to enhance 
precipitation accuracy while maintaining 
computational efficiency, contributing to 
improved satellite precipitation correction for 
hydrological and climatological applications in 
data-scarce regions.
2. Study Area and Data Used

Thailand was selected due to its tropical 
climate, diverse topography, and comprehensive 
meteorological network [22], [23]. Located 
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between 5°37'N to 20°27'N and 97°22'E to 
105°37'E, Thailand covers 513,120 km² including 
mountainous terrain, central plains, the Khorat 
Plateau, and Southern peninsula [24,25]. This 
diversity creates complex precipitation patterns 
influenced by Southwest (May-October) and 
Northeast (November-February) monsoons, 
making it ideal for testing satellite precipitation 
correction methodologies [26]. The study 
utilized data from 628 meteorological stations 
across Thailand spanning 44 years (1981-2024) 
[27] (Figure 1). Station elevations range from sea 
level to over 1,500 meters, capturing topographic 
precipitation effects [28]. CHIRPS satellite data 
provided quasi-global precipitation estimates 
at 0.05° resolution covering 18,513 grid points 
across Thailand [3]. CHIRPS combines satellite 
infrared observations, microwave estimates, and 
ground station data, selected for its long temporal 
record and proven tropical performance [29, 

30]. Ground observations included daily 
precipitation, maximum/minimum temperature, 
relative humidity, and evaporation from 628 
stations following WMO standards [31], [32]. 
All data underwent quality control including 
range checks and spatial validation [33]. Missing 
data was generally low (<5%) [34]. The dataset 
was partitioned into training (1981-2015) 
and validation (2016-2024) periods [35]. Data 
were stratified by seasons: December-January-
February (DJF), March-April-May (MAM), June-
July-August (JJA), and September-October-
November (SON) [36]. Data preprocessing 
included temporal alignment, missing value 
identification, and outlier detection [37]. The 
final dataset maintained high completeness with 
2,512 station-season combinations, providing 
ideal foundation for developing the integrated 
bias correction framework across Thailand's 
diverse conditions [38].

Figure 1. Distribution of TMD rainfall gauge stations across six regions of Thailand 
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3. Methodology
This study employed an integrated two-stage 

framework combining K-nearest neighbors 
machine learning with Kalman filter blending 
to enhance CHIRPS precipitation estimates 
across Thailand [39], [17]. The methodology 
addresses systematic biases while maintaining 
computational efficiency [40]. The dataset 
utilized 628 stations across Thailand with 
elevations from sea level to over 1,500 meters 
[27]. CHIRPS provided precipitation estimates 
at 0.05° resolution covering 18,513 grid 
points [3]. Ground observations included daily 
precipitation, temperature, humidity, and 
evaporation following WMO standards [31]. 
Data were partitioned into training (1981-2015) 
and validation (2016-2024) periods and stratified 
into four seasons: DJF, MAM, JJA, and SON [35], 
[36]. For each station, 11-dimensional feature 
vectors incorporated CHIRPS precipitation, 
meteorological variables, and coordinates [41]. 
Spatial optimization determined neighboring 
configurations using Euclidean distance.

KNN implementation tested K values of 1, 3, 
and 5 with Euclidean, Minkowski, and Manhattan 
distance metrics [42]. Bagging ensemble used 
bootstrap sampling with arithmetic mean 
aggregation [43].

Feature scaling applied standardization:

					   
Seasonal model development created 2,512 

models (628 stations × 4 seasons) with cross-
validation [44].

The Kalman filter stage mapped each station 
to nearest CHIRPS grid point:

Gridpoint= argmin(distance(stationcoords,gridcoords))  (2)

State-space model used persistence:

x(t) = x(t - 1) + w(t)			           (3)

with observation equations:

Zraw(t) = x(t) + vraw(t)zcorr(t) = x(t) + vcorr(t)     (4)

The dual-update process included prediction:

xpred(t) = xest(t-1)Ppred(t) = Pest(t-1) + Q	          (5)

and sequential updates with non-negativity 
constraints:

xfinal(t) = max(0,xest(t))	 	         (6)

Performance evaluation used Pearson 
correlation and Percent Bias [45]. Multi-temporal 
evaluation covered historical and recent periods 
with comparative analysis across raw CHIRPS, KNN-
corrected, and Kalman blended products [46].

These metrics were chosen because they 
directly address the two fundamental aspects 
of satellite precipitation correction: Temporal 
correspondence (correlation) and systematic 
bias magnitude (PBIAS), which are critical for 
hydrological modeling and water resource 
management applications. Correlation 
coefficient assesses the ability to capture 
precipitation variability and timing, while PBIAS 
quantifies systematic over- or under-estimation 
relating to water balance calculations. The 
comprehensive evaluation framework combined 
these statistical metrics with temporal analysis 
across training and validation periods, regional 
stratification across Thailand's six climatic zones, 
seasonal assessment through DJF, MAM, JJA, 
and SON periods, and spatial validation (Figures 
2-8) demonstrating operational applicability. 
Accuracy improvements were reported using 
standardized calculations throughout Tables 
1-2 and all discussion sections: For correlation 
coefficients, relative improvement = ((R_
corrected - R_raw) / R_raw) × 100%, and for 
bias reduction, percent reduction = ((|PBIAS_
raw| - |PBIAS_corrected|) / |PBIAS_raw|) × 
100%, ensuring transparent and reproducible 
improvement quantification.

For the KNN configuration, we tested K values 
of 1, 3, and 5 neighbors with three distance 
metrics (Euclidean, Minkowski, Manhattan), with 
K=5 and Euclidean distance providing optimal 
performance across most stations and seasons 
after cross-validation. The bagging ensemble 
employed bootstrap sampling with 10 iterations 

(1)
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and arithmetic mean aggregation for final 
predictions, while all features were standardized 
using training set statistics (μ_train, σ_train) and 
applied consistently to validation data. Kalman 
filter parameters, including process noise (Q) 
and measurement noise covariances (R), were 
optimized through grid search on the training 
period with values ranging from 0.1 to 10.0 
for different regions. To prevent information 
leakage, we implemented strict temporal 
partitioning with several critical safeguards: 
(1) Clean separation between training (1981-
2015) and validation (2016-2024) periods with 
no overlap, (2) Station-wise standardization 
with scaling parameters computed exclusively 
from training data and frozen before validation, 
(3) Independent training of each of the 2,512 
models (628 stations × 4 seasons) using only 
historical data, (4) KNN neighbor selection 
and Kalman filter updates using only past 
observations with no future information, and (5) 
Time-series cross-validation within the training 
period that respected temporal ordering.
4. Results

4.1. Evaluation of Bias Corrected Precipitation
Both Bias-Corrected CHIRPS (BC CHIRPS) and 

Blended Bias-Corrected CHIRPS (BBC CHIRPS) 
demonstrated exceptional improvements over 
raw CHIRPS during training period, as detailed 
in Table 1. Year-round correlation coefficients 
increased 124% from 0.42 to 0.94 for both 
methods, with regional performance variations 
illustrated in Figures 2-3 showing consistent 
improvements across all 628 meteorological 
stations. South-Western region showed the 
largest improvement (221%), followed by 
South-Eastern (191%) and Eastern (98%) 
regions. Northern, Central, and North-Eastern 
regions achieved 86-116% improvements. 
For bias reduction, BC CHIRPS achieved 70.6% 
overall improvement, transforming 34.03% 
overestimation to -10.00% underestimation, 
while BBC CHIRPS provided 68.3% improvement 
(-10.78% underestimation). The distributional 
transformation is visualized in Figures 4-5, 
showing systematic shift from wet to controlled 
dry bias. South-Western region showed largest 

enhancement at 85.3% (BC) and 78.5% (BBC), 
followed by South-Eastern at ~80%. Central 
and Eastern regions demonstrated 59-66% 
improvements, while Northern and North-
Eastern regions achieved 23-32% reductions.

The transformation from systematic 
overestimation to controlled underestimation 
(-10.00% for BC CHIRPS and -10.78% for BBC 
CHIRPS) represents a strategic outcome known 
as "controlled dry bias." This intentional slight 
underestimation is preferable to overestimation 
in water resource management applications, 
as it provides a conservative estimate for 
water availability assessments and reduces the 
risk of overestimating water resources. This 
controlled bias pattern remained consistent 
during validation (Table 2), where 23.11% 
overestimation was reduced to -7.41% (BC) and 
-7.79% (BBC), demonstrating the framework's 
ability to maintain controlled underestimation 
across different time periods.
4.2. Seasonal rainfall analysis

Training period (1981-2015) box plot analysis 
revealed systematic Raw CHIRPS overestimation 
averaging 31.1%, with severe DJF bias (92.2%). 
South-Western and South-Eastern regions 
experienced highest overestimations (150% 
and 125% during DJF), while Northern regions 
showed moderate overestimations (40-50%). 
Both correction methods transformed systematic 
wet bias to controlled underestimations (-3.1% 
and -4.1%). MAM season showed 45.8% Raw 
CHIRPS overestimation, particularly in South-
Western (71.4%) and Eastern (60%) regions. 
Wet seasons JJA and SON demonstrated 
moderate overestimations (20.6% and 25.2%). 
Both corrections achieved excellent bias 
control with underestimations from -2.1% 
to -8.9%. Validation period (2016-2024) 
showed improved Raw CHIRPS performance 
(18.9% average overestimation) and sustained 
correction effectiveness. BC CHIRPS and BBC 
CHIRPS maintained excellent control (-2.0% 
and -2.7% underestimation). DJF remained 
challenging (48.7% Raw CHIRPS overestimation), 
but corrections achieved excellent control (BC: 
-3.9%, BBC: -2.0%). Both methods demonstrated 
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robust transferability, with Raw CHIRPS naturally 
improving from 31.1% to 18.9% overestimation 

while corrections maintained effectiveness 
across Thailand's diverse conditions.

Table 1. Goodness-of-fit test in the training period (1981-2015)

Season Region R PBIAS (%)
Raw CHIRPS BC CHIRPS BBC CHIRPS Raw CHIRPS BC CHIRPS BBC CHIRPS

DJF Northern 0.26 0.79 0.78 254.86 -11.07 -6.66
Central 0.26 0.81 0.81 236.91 -7.82 -3.15
Eastern 0.31 0.87 0.87 163.62 -14.30 -12.71
North-Eastern 0.29 0.82 0.82 129.96 -11.52 -8.68
South-Western 0.25 0.81 0.80 1370.04 -8.93 -2.33
South-Eastern 0.30 0.81 0.80 1374.21 -7.33 1.70
Average 0.28 0.82 0.81 588.27 -10.16 -5.31

MAM Northern 0.42 0.93 0.93 34.62 -12.71 -11.89
Central 0.43 0.93 0.93 59.81 -10.58 -9.73
Eastern 0.42 0.94 0.94 39.03 -11.33 -11.99
North-Eastern 0.46 0.94 0.94 31.11 -10.36 -9.54
South-Western 0.27 0.92 0.92 104.41 -9.56 -13.71
South-Eastern 0.31 0.91 0.91 56.39 -15.14 -15.18
Average 0.38 0.93 0.93 54.23 -11.61 -12.01

JJA Northern 0.36 0.93 0.93 15.06 -8.99 -8.51
Central 0.36 0.92 0.92 34.77 -9.45 -8.92
Eastern 0.37 0.92 0.92 29.25 -9.93 -10.78
North-Eastern 0.42 0.93 0.93 17.23 -7.75 -7.13
South-Western 0.24 0.89 0.89 57.93 -8.88 -13.62
South-Eastern 0.22 0.90 0.90 47.03 -6.98 -7.15
Average 0.33 0.92 0.92 33.54 -8.66 -9.35

SON Northern 0.43 0.94 0.94 18.61 -9.41 -8.69
Central 0.48 0.94 0.94 36.58 -8.57 -8.00
Eastern 0.49 0.94 0.94 35.28 -8.94 -9.54
North-Eastern 0.52 0.94 0.94 13.54 -8.83 -8.14
South-Western 0.20 0.92 0.92 71.65 -9.91 -14.30
South-Eastern 0.27 0.90 0.91 60.64 -10.53 -10.73
Average 0.40 0.93 0.93 39.38 -9.37 -9.90

All 
year 

round

Northern 0.44 0.95 0.95 13.36 -10.27 -9.82
Central 0.47 0.94 0.94 28.22 -9.87 -9.54
Eastern 0.48 0.94 0.95 27.14 -10.13 -11.06
North-Eastern 0.51 0.95 0.95 12.64 -9.08 -8.56
South-Western 0.29 0.93 0.93 67.17 -9.86 -14.44
South-Eastern 0.32 0.93 0.93 55.66 -10.80 -11.23
Average 0.42 0.94 0.94 34.03 -10.00 -10.78
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Table 2. Goodness-of-fit test in the validation period (2016-2024)

Season Region R PBIAS (%)
Raw CHIRPS BC CHIRPS BBC CHIRPS Raw CHIRPS BC CHIRPS BBC CHIRPS

DJF Northern 0.14 0.75 0.74 110.75 15.95 19.76
Central 0.25 0.73 0.72 211.78 0.98 5.34
Eastern 0.19 0.79 0.78 146.27 12.95 15.14
North-Eastern 0.14 0.71 0.70 135.14 23.06 26.81
South-Western 0.35 0.91 0.91 145.72 -0.62 -1.72
South-Eastern 0.46 0.85 0.85 253.10 -17.90 -14.84
Average 0.25 0.79 0.78 167.12 5.74 8.42

MAM Northern 0.35 0.91 0.91 56.70 -5.54 -4.15
Central 0.44 0.89 0.90 52.36 -8.48 -7.25
Eastern 0.39 0.91 0.91 46.79 -2.16 -2.83
North-Eastern 0.35 0.92 0.92 34.42 -5.47 -4.29
South-Western 0.39 0.92 0.92 36.77 -10.11 -13.91
South-Eastern 0.38 0.86 0.87 59.57 5.03 5.79
Average 0.38 0.90 0.90 47.77 -4.45 -4.44

JJA Northern 0.30 0.89 0.89 16.11 -6.12 -5.32
Central 0.33 0.87 0.87 31.61 -8.74 -7.59
Eastern 0.28 0.88 0.88 28.81 -4.31 -5.85
North-Eastern 0.36 0.90 0.90 22.19 -1.47 -0.48
South-Western 0.32 0.92 0.92 27.82 -8.20 -12.40
South-Eastern 0.23 0.85 0.85 31.68 0.72 1.10
Average 0.30 0.89 0.89 26.37 -4.69 -5.09

SON Northern 0.37 0.91 0.91 31.00 -1.50 -0.37
Central 0.41 0.91 0.91 32.14 -5.32 -4.39
Eastern 0.39 0.91 0.91 39.19 -1.70 -2.11
North-Eastern 0.47 0.92 0.92 20.98 2.16 3.09
South-Western 0.32 0.92 0.92 28.99 -11.91 -16.12
South-Eastern 0.35 0.88 0.88 38.88 -9.22 -8.50
Average 0.38 0.91 0.91 31.86 -4.58 -4.73

All 
year 

round

Northern 0.38 0.92 0.92 17.85 -5.98 -5.23
Central 0.42 0.91 0.91 24.60 -8.75 -7.96
Eastern 0.39 0.91 0.91 27.98 -4.68 -5.55
North-Eastern 0.43 0.92 0.92 17.56 -2.89 -2.02
South-Western 0.39 0.93 0.93 25.22 -11.05 -15.26
South-Eastern 0.42 0.87 0.88 25.44 -11.10 -10.75
Average 0.41 0.91 0.91 23.11 -7.41 -7.79



JOURNAL OF CLIMATE CHANGE SCIENCE 
NO. 35 - SEP. 2025

33

Figure 2. Comparison of seasonal correlation maps in the training period (1981-2015)
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Figure 3. Comparison of seasonal correlation map in the validation period (2016-2024)
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4.3. Spatial analysis
DJF 2022 spatial comparison (Figure 

6) demonstrates Blended KNN BC CHIRPS 
effectiveness. Observed patterns showed 
minimal Northern/central precipitation 
and elevated Southern rainfall. Raw CHIRPS 
exhibited systematic overestimation (50-150 
mm in central/Northeastern regions vs near-
zero observations). Corrected dataset achieved 
remarkable accuracy, eliminating overestimation 
while preserving legitimate Southern signals (0-

25 mm Northern/central, 25-75 mm Southern). 
SON 2022 analysis (Figure 7) showed superior 
correction during post-monsoon transition. 
Observed patterns exhibited typical North-
South gradient (50-150 mm Northern, 100-
250 mm central, 200-400 mm Southern). Raw 
CHIRPS showed severe overestimation (300-
500 mm central/Northeastern vs 100-200 mm 
observed). Correction transformed unrealistic 
uniform distribution to realistic patterns 
matching observations.

Figure 4. Box plots of seasonal rainfall in each region of Thailand in the training period (1981-2015) 

Figure 5. Box plots of seasonal rainfall in each region of Thailand in the validation period (2016-2024)
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Figure 7. Comparison of SON seasonal rainfall map in year 2022

Figure 6. Comparison of DJF seasonal rainfall map in year 2022
a) Observed                             b) Raw CHIRPS                        c) Blended KNN BC CHIRPS

a) Observed                             b) Raw CHIRPS                        c) Blended KNN BC CHIRPS

a) Observed                             b) Raw CHIRPS                        c) Blended KNN BC CHIRPS
Figure 8. Comparison of daily rainfall map on 27 August 2024
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Daily validation (August 27, 2024) during 
active monsoon conditions (Figure 8) confirmed 
operational reliability. Observed patterns 
showed intense central/eastern precipitation 
(100-250 mm), moderate Northern rainfall (50-
150 mm), and variable Southern amounts (25-
200 mm). Raw CHIRPS demonstrated significant 
overestimation (200-400 mm Northeastern vs 
50-100 mm observed). Blended KNN BC CHIRPS 
exhibited exceptional daily accuracy, reducing 
overestimation by 70-85% in Northeastern 
regions while preserving genuine high-intensity 
signals.

These validations provide visual evidence 
that corrections not only reduce bias but 
preserve realistic geographical patterns essential 
for hydrological applications, demonstrating 
capability across diverse topographical and 
meteorological conditions.
5. Conclusion and discussion

This study successfully developed an 
integrated two-stage framework combining 
K-Nearest Neighbors machine learning with 
Kalman filter blending to enhance CHIRPS 
precipitation estimates across Thailand. 
Correlation coefficients increased from 0.42 
to 0.94 (training) and 0.41 to 0.91 (validation), 
representing 124% and 122% improvements 
respectively, with consistent gains across BC 
CHIRPS and BBC CHIRPS methods. Regional 
analysis reveals differential effectiveness 
across climatic zones. South-Western region 
demonstrated dramatic improvements (221% 
training, 138% validation) while maintaining 
high performance (>0.93 correlation), likely 
reflecting topographical influences creating 
predictable bias characteristics. Northern and 
North-Eastern regions achieved substantial 
relative improvements (142% and 114% 
validation) despite weaker initial correlations. 
Bias reduction demonstrates capability to 
address systematic CHIRPS overestimation. 
Transformation from 34.03% overestimation to 
-10.00% (BC) and -10.78% (BBC) underestimation 
represents fundamental shift from wet to 
controlled dry bias. The framework shows 
exceptional adaptability across monsoonal 

regimes, with DJF dry season overestimation 
of 588.27% (training) and 167.12% (validation) 
reduced by 95-99%.

Comprehensive spatial validation (Figures 
6-8) confirms operational applicability beyond 
point-based statistics. Figure 6 illustrates DJF 
2022 effectiveness in eliminating systematic 
overestimation (50-150 mm in central/
Northeastern regions) while preserving 
legitimate Southern precipitation signals. 
Figure 7 demonstrates SON 2022 superior 
correction, transforming unrealistic uniform 
distribution (300-500 mm) to realistic patterns 
matching observations (100-200 mm). Figure 
8 displays August 27, 2024 daily validation 
during active monsoon, confirming 70-85% 
overestimation reduction in Northeastern 
regions while preserving genuine high-intensity 
signals. The seasonal correlation maps (Figures 
2-3) demonstrate consistent performance 
improvements across all 628 stations for both 
training and validation periods, while box 
plots analyses (Figures 4-5) show distributional 
transformation from systematic wet bias to 
controlled dry bias across all regions. Key 
innovations include 11-dimensional feature 
vectors, dual-update Kalman filtering, and 
systematic parameter optimization. This 
research demonstrates that machine learning 
integrated with optimal filtering significantly 
enhances satellite precipitation accuracy, with 
performance improvements enabling new 
hydrological applications and strong potential 
for broader tropical applications.

Future research directions include: (1) 
Investigating framework transferability to 
other satellite products (IMERG, GSMaP) and 
geographic regions with different climate 
regimes to assess generalizability across 
diverse conditions, (2) Developing real-time 
implementation protocols with automated 
model updating and quality control procedures 
for operational forecasting systems, (3) 
Integrating ensemble prediction methods 
to quantify uncertainty in bias-corrected 
estimates and provide probabilistic forecasts 
for risk assessment, (4) Exploring deep learning 
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architectures (LSTM, CNN, Transformers) 
for capturing complex spatio-temporal 
precipitation patterns while maintaining the 
controlled dry bias characteristic, (5) Evaluating 
framework performance specifically for extreme 
precipitation events and hydrological drought 
monitoring to assess applicability across the 
full precipitation spectrum, and (6) Extending 
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