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Abstract: Drought is a complex natural hazard characterized by stochastic occurrence, wide-ranging 
impacts, and sequential propagation across the hydrological cycle. This study proposes a copula-based 
framework to construct an Integrated Drought Index (IDI) for the Ba River Basin, Viet Nam, combining 
meteorological (SPI), agricultural (SMI), and hydrological (SRI, SGI) drought dimensions. The VIC distributed 
hydrological model was developed and calibrated for 1980-2023, explicitly incorporating the operation of 
major reservoirs to better capture regulated flow regimes. Standardized drought indices were computed at 
monthly timescales, and a Clayton Copula was applied to model lower-tail dependence among them, enabling 
quantification of compound drought conditions. The resulting IDI was analyzed for four representative 
drought years (2015, 2016, 2019, 2020), which correspond to major El Nino episodes associated with severe 
rainfall deficits and socio-economic damages. Results show that the IDI effectively captures both the intensity 
and spatial extent of drought propagation, with 2016 emerging as the most extreme basin-wide drought, 
2020 showing similarly widespread impacts, and 2015 and 2019 characterized by more localized drought 
hotspots. By integrating reservoir regulation, multi-source data, and copula-based dependence modeling, 
this study provided a more holistic representation of compound drought risk in a socio-hydrologically 
complex basin.
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1. Introduction 
Drought is widely recognized as one of the 

most devastating natural hazards, exerting 
profound impacts on ecosystems, agriculture, 
water resources, and socioeconomic 
development. Rather than being defined solely 
as a precipitation deficit, drought represents 
a multifaceted phenomenon with cascading 
effects throughout the hydrological cycle [1]. 
In general, three principal types of drought are 
distinguished: Meteorological, agricultural, and 
hydrological drought [2]. Meteorological drought 
is usually identified by sustained precipitation 
deficits, agricultural drought emerges as soil 
moisture becomes insufficient for crop needs, 

and hydrological drought develops later, 
manifested as reduced streamflow, reservoir 
storage, and groundwater recharge.

Traditional drought assessments have largely 
relied on single indicators that capture only 
one dimension of this process. For example, 
the Standardized Precipitation Index (SPI) 
reflects meteorological drought [3], whereas 
the Standardized Runoff Index (SRI) and the 
Standardized Groundwater Index (SGI) focus 
on hydrological drought [4]. While such indices 
are useful for monitoring specific components, 
they cannot fully capture the interconnected 
and evolving nature of drought. This limitation 
has motivated the development of integrated 
drought indices (IDI), which aim to combine 
diverse sources of information into a more 
comprehensive representation [5].

An effective IDI should do more than simply 
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aggregate existing indices; it must reflect the 
sequential propagation of drought. Typically, 
drought begins as a meteorological anomaly, 
spreads into the agricultural domain through soil 
moisture depletion, and eventually manifests in 
hydrological systems as declining streamflow 
and groundwater levels [6]. By integrating 
indicators such as SPI (precipitation), SMI (soil 
moisture), SRI (runoff), and SGI (groundwater), 
an IDI can provide insight into both the onset 
and evolution of drought conditions.

Developing such an index, however, requires 
careful consideration of interdependencies 
among hydro-meteorological variables. 
Precipitation, soil moisture, runoff, and 
groundwater are inherently linked, with 
feedbacks across different spatial and temporal 
scales. Consequently, integration cannot rely on 
simple linear averaging, as this may overlook 
nonlinearities and tail dependencies where 
extreme drought impacts occur. Methods such 
as Principal Component Analysis (PCA) have 
been applied to combine drought indicators, yet 
they often assume linear correlation structures, 
which may not adequately represent complex 
hydrological relationships [7].

Copula theory provides a promising 
alternative. By separating marginal distributions 
from their dependence structure, copulas enable 
flexible modeling of nonlinear associations and 
allow explicit representation of tail dependence, 
where co-occurring extremes are most critical 
[8], [9]. This makes copulas particularly suitable 
for constructing integrated drought indices, as 
they can capture both the diversity of individual 
indicators and the strength of their joint 
behavior. Among copula families, the Clayton 
copula is especially effective for modeling 
lower-tail dependence, which is essential for 
understanding the compounding impacts of 
severe droughts.

Building an IDI using the Clayton copula 
meets these requirements. By integrating SPI, 
SMI, SRI, and SGI into a unified framework, the 
approach accounts for nonlinear and asymmetric 
dependence among drought indicators while 
avoiding restrictive assumptions about their 
marginal distributions. This enhances the 

reliability of drought monitoring compared 
with traditional correlation-based methods. 
Moreover, the ability of copula-based models 
to characterize joint extremes strengthens their 
capacity to identify critical drought conditions 
and inform risk management.

Despite significant progress in drought 
monitoring worldwide, there remains a 
considerable gap in the development and 
application of integrated drought indices at 
the basin scale in Viet Nam. Most existing 
studies on the Ba River Basin have relied on 
single drought indicators such as SPI or SRI, 
which provide valuable information on specific 
drought types but fail to represent the multi-
dimensional propagation and interactions among 
meteorological, agricultural, and hydrological 
droughts. Moreover, few attempts have been 
made to adopt advanced statistical tools such 
as copula functions to explicitly model nonlinear 
and asymmetric dependencies among drought 
indicators in this region. This limitation hinders 
comprehensive drought risk assessment and the 
design of effective water resources management 
strategies under a changing climate. To address 
these gaps, the present study aims to develop 
an Integrated Drought Index (IDI) for the Ba River 
Basin in Viet Nam using a copula-based framework. 
Specifically, the Clayton copula is employed to 
integrate four key drought indicators SPI, SMI, SRI, 
and SGI representing meteorological, agricultural, 
and hydrological droughts.
2. Data and Methods

2.1. Study area 
The Ba River Basin has an elongated and 

narrow shape with a total area of about 13,417 
km². It lies mainly within three provinces Gia 
Lai, Dak Lak, and Phu Yen covering one city, two 
towns, and 19 districts. The Ba River originates 
from Ngoc Ro Mountain (1,549 m) in the Truong 
Son Range. From its headwaters to An Khe, 
the river flows Northwest-Southeast, then 
shifts North-South, and after the Hinh River 
confluence turns west-east before discharging 
into the East Sea at the Da Rang estuary in Tuy 
Hoa City, Phu Yen Province. The basin receives 
an average annual rainfall of around 1,760 mm. 
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Due to the influence of the eastern Truong Son 
rainfall regime, the wet season lasts from May 
to December, contributing 78-82% of annual 
rainfall, while the dry season contributes only 
18-22%. Maximum rainfall usually occurs in 
August, whereas the driest months are January 
to February. Despite its relatively large size, the 

basin has one of the sparsest rainfall and water 
level monitoring networks in Viet Nam. There 
are five major reservoirs in the basin: An Khe-
Ka Nak, Ayun Ha, Krong H’nang, Song Hinh, 
and Song Ba Ha which are vital for hydropower 
generation, irrigation, and water management 
(Figure 1). 

2.2. Data 
This study employs gauged streamflow 

records for the period 1980-2023 were 
obtained from the Viet Nam Meteorological 
and Hydrological Administration (VMHA), 
providing long-term observations of river 
discharge. Precipitation data for the same 
period were taken from the Viet Nam Gridded 
Precipitation (VnGP) dataset [10], which has 
been specifically developed and validated for 
hydrometeorological applications in Viet Nam.

To capture atmospheric variables, we used 

the ERA5 global reanalysis dataset (1980-
2023) produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) 
[11]. This dataset provides gridded information 
on wind speed, evapotranspiration, and mean, 
minimum, and maximum temperatures, which 
are essential inputs for drought monitoring and 
hydrological modeling.

Topographic information was derived 
from the Advanced Land Observing Satellite 
(ALOS) World 3D dataset (AW3D30), which 
offers a Digital Elevation Model (DEM) with 

Figure 1. Location, rivers, reservoirs and gauging stations in the Ba Basin, Viet Nam
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approximately 30-meter resolution, produced 
by the Japan Aerospace Exploration Agency 
(JAXA) Earth Observation Research Center 
(EORC) in 2012 [12]. Soil characteristics were 
obtained from the FAO-UNESCO Soil Map of 
the World (SMW) [13], which provides spatially 
distributed information on soil types and 
properties. In addition, land use and land cover 
patterns were derived from the Land Cover CCI 
Product (ESA Version 2.0, 2017) [14].
2.3. Methods 

2.3.1. VIC model
In this study, the Variable Infiltration 

Capacity (VIC) model [15] is applied to simulate 
hydrological processes in the Ba River Basin. 
The VIC model was selected for several reasons. 
First, it is a fully distributed, physically based 
model that explicitly represents the spatial 
heterogeneity of meteorological and surface 
inputs. Second, as a land surface hydrological 
model, it quantitatively represents the exchange 
of water, energy, and momentum fluxes between 
the land surface and the atmosphere. Third, the 
model structure allows the inclusion of human 
influences, such as reservoir operations and 
land use/land cover changes, which are critical 
for basin-scale applications.

The VIC framework typically consists of three 
main components. The rainfall-runoff module 
forms the core of the system, simulating the 
interactions among climate forcings, land surface 
characteristics, and hydrological responses. 
It uses meteorological drivers together with 
physiographic properties to produce gridded 
estimates of surface runoff and baseflow. These 
outputs are then aggregated by the routing 
module to estimate streamflow at specified basin 
outlets. Additionally, a calibration component is 
incorporated to improve the accuracy of both 
runoff generation and routing. While the MOEA 
module is often employed for this purpose, in 
the present study the SCE-UA (Shuffled Complex 
Evolution-University of Arizona) optimization 
algorithm is adopted instead of the NSGA multi-
objective genetic algorithm to achieve efficient 
parameter estimation and calibration. In this 
study, the Ba River Basin was discretized into a 

VIC model grid with three soil layers at a spatial 
resolution of 0.04°, resulting in 1,683 grid cells 
(51 × 33), of which 752 cells fall within the basin 
boundary.

In routing module, reservoir operation was 
explicitly incorporated through two parameter 
groups: (1) Reservoir location and (2) Reservoir 
characteristics together with the operation rule 
curves. Reservoir locations were integrated into 
the model using GIS-based spatial referencing, 
ensuring accurate representation of their 
position within the river network. Reservoir 
physical parameters (e.g., storage capacity, 
release structures) and operating rules (e.g., 
flood control, irrigation, hydropower priorities) 
were then embedded to govern inflow-outflow 
relationships.
2.3.1. Development of IDI

Monthly time series of precipitation, soil 
moisture, surface runoff, and baseflow were 
extracted from the VIC simulations for each grid 
cell. These outputs were then aggregated to the 
district scale using area-weighted averaging to 
generate consistent datasets for drought index 
computation.

Four univariate drought indices were 
derived: SPI (Standardized Precipitation Index), 
SMI (Soil Moisture Index), SRI (Standardized 
Runoff Index), and SGI (Standardized 
Groundwater Index). Each index was calculated 
at multiple accumulation timescales to capture 
the response dynamics of different hydrological 
components: 1-3-6-12 months for SPI, SRI, and 
SGI, and 1-6 months for SMI.

To integrate these indicators, we adopted 
the copula-based approach proposed by Shah 
and Mishra (2019) [5]. As drought propagates 
sequentially through the hydrological cycle 
from meteorological deficits (SPI) to soil 
moisture depletion (SMI), reduced runoff 
(SRI), and groundwater decline (SGI) lagged 
correlations were first assessed. Pearson 
correlation analysis was conducted to identify 
the most representative timescales for each 
index, ensuring that the selected combinations 
reflect the strongest interdependencies across 
drought types.
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The joint dependence structure among 
SPI, SMI, SRI, and SGI was modeled using the 
Clayton Copula, which is particularly effective in 
capturing lower-tail dependence representing 
simultaneous extreme deficits across variables. 
In this framework, the standardized indices were 
first transformed into cumulative probabilities 
through the standard normal cumulative 
distribution function. These probabilities were 
then combined using the Clayton Copula:

Where, ui denotes the marginal cumulative 
probability of each drought index, d=4 is the 
number of variables, and θ>0 is the dependence 
parameter estimated by maximum likelihood.

The resulting joint cumulative distribution 
function (Joint CDF) quantifies the probability 
of concurrent drought conditions. A lower Joint 
CDF indicates a higher likelihood of simultaneous 
severe deficits, while higher values imply wetter 
conditions. To enhance interpretability, Joint 
CDF values were converted back into a standard 
normal score using the inverse normal function, 
yielding the Integrated Drought Index (IDI):

IDI= ϕ-1 (JointCDF) 		                         (2)

The IDI time series thus provides a 
comprehensive measure of drought, integrating 
meteorological, agricultural, and hydrological 
dimensions. Negative IDI values indicate drought, 
positive values indicate wet conditions, and values 
near zero correspond to near-normal states.

The research method schematic of this study 
is depicted in Figure 2. 

(1)

Figure 2. Research method schematic

3. Results and discussion

3.1. Calibration and validation of the VIC model

3.1.1. Calibration period (1995-2001)

The VIC model was first calibrated for the 
pre-dam period (1995-2001) at An Khe and 
Cung Son stations. Six soil parameters (bin, Ds, 
Dmax, Ws, D2, D3) were optimized to reproduce 
the observed streamflow. The performance of 

the model was evaluated using the statistical 
indicators NSE, RMSE, Pbias, and R². The results 
indicate that the model achieved satisfactory 
performance at both stations, with NSE values 
of 0.80 at An Khe and 0.84 at Cung Son, and high 
coefficients of determination (R²>0.90). The 
calibration statistics are presented in Table 1, 
while the simulated and observed hydrographs 
during the calibration period are illustrated in 
Figure 3.
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3.1.2. Validation period (2002-2008)
Model validation was carried out for the 

subsequent period (2002-2008), prior to the 
operation of large reservoirs in the basin. Using 
the calibrated parameters, the VIC model was 
applied to both An Khe and Cung Son stations. 
The results (see Table 2) show that model 
performance remained acceptable, with NSE 

of 0.77 at An Khe and 0.76 at Cung Son, and R² 
values of 0.96 for both stations. These results 
confirm the model’s robustness in reproducing 
observed monthly streamflow. The comparison 
between observed and simulated discharge 
for the validation period is illustrated in Figure 
4, demonstrating good agreement in both 
magnitude and seasonal variation. 

Table 1. The NSE, R2, RMSE, BIAS index stations in the calibration period 1995-2001

Hydrological station NSE RMSE Pbias R²
An Khe 0.80 26.27 32.46 0.95

Cung Son 0.84 155.33 29.71 0.93

Figure 3. The simulated and observed monthly discharge at An Khe and Cung Son stations in the calibration 
period 1995-2001

Table 2. The NSE, R2, RMSE, BIAS index stations in the validation period 2002-2008

Hydrological station NSE RMSE Pbias R²
An Khe 0.77 23.93 35.19 0.96

Cung Son 0.76 110.68 32.08 0.96

Figure 4. The simulated and observed monthly discharge at An Khe and Cung Son stations in the validation 
period 2002-2008
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3.2. Evaluation of IDI
From the monthly time series of precipitation, 

runoff, soil moisture, and baseflow (1980-2023), 
four standardized drought indices (SPI, SRI, SMI, 
and SGI) were derived for each district within 
the Ba River basin. Based on correlation analysis, 
the study identified an optimal set of indices to 
be used as inputs for the Copula model:

SPI-6: Standardized Precipitation Index with 
a 6-month accumulation period.

SRI-6: Standardized Runoff Index with a 
6-month accumulation period.

SMI-3: Soil Moisture Index with a 3-month 
accumulation period.

SGI-3: Standardized Groundwater Index with 
a 3-month accumulation period.

Notably, both SMI and SGI were incorporated 
with a one-month lag relative to SPI and SRI. 
The selection of this combination followed 
the principle of maximizing cross-correlation 
among indices, thereby ensuring that the 
Copula framework could effectively integrate 
drought signals across different hydrological 

3.1.3. Validation for the post-dam period (2009-2022)
The calibrated parameters were further 

applied to the post-dam period (2009-2022), 
when major reservoirs became operational 
across the Ba River basin. The performance 
statistics (Table 3) show a reduction in model 

efficiency, with NSE values declining to 0.64 at An 
Khe and 0.60 at Cung Son, and increased RMSE 
and Pbias values. This degradation reflects the 
impact of human interventions. Nevertheless, 
the model was still able to reproduce the general 
discharge patterns, as shown in Figure 5. 

Table 3. The NSE, R2, RMSE, BIAS index stations in the validation period 2009-2022

Hydrological station NSE RMSE Pbias R²
An Khe 0.64 21.30 40.82 0.72

Cung Son 0.60 206.51 42.04 0.71

components. Correlation analysis revealed 
that the strongest interdependencies occurred 
at specific accumulation periods, which 
did not necessarily coincide across indices. 
Identifying this optimal configuration was 
therefore essential for selecting inputs to the 
Copula model. By capturing highly correlated 
signals, the Copula model can more accurately 
represent the dependence structure among 
indices, ultimately yielding a composite drought 
index (IDI) that is both statistically robust and 
physically meaningful.

The computation of the four univariate 
drought indices (SPI-6, SRI-6, SMI-3, SGI-3) 
together with the composite IDI provides a 
comprehensive view of drought evolution in the 
Ba River Basin. The analysis in this study focuses 
on assessing integrated drought during the dry 
season in 2015, 2016, 2019, 2020. These periods 
were selected because they coincide with 
strong El Nino events that caused substantial 
rainfall deficits and elevated temperatures 
across Viet Nam. Historical records confirm 

Figure 5. The simulated and observed monthly discharge at An Khe and Cung Son stations in the validation 
period 2009-2022
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that these episodes led to widespread water 
shortages, agricultural losses, and hydrological 
stress within the Ba River Basin. The results for 
the most severe drought months across four 
major drought episodes show that IDI effectively 
captures both the intensity and spatial extent of 
drought impacts at the district scale (Figure 6-8).

In 2015, the meteorological drought index 
(SPI-6) indicated rainfall deficits mainly in the 
upstream areas such as K’Bang and some 
midstream districts. The soil moisture index 
(SMI-3) also reflected soil water shortages in 
these regions, although the extent of drought 
impacts had not yet spread across the basin. The 
runoff (SRI-6) and groundwater (SGI-3) indices 
showed only moderate hydrological impacts in 
the downstream areas. The integrated drought 
index (IDI) suggested localized severe drought 
in upstream and midstream areas, but without 
a wide spatial extent. This pattern is consistent 
with reported damages in Gia Lai Province, where 
drought in 2015 affected more than 12,803 ha of 
crops with estimated losses of VND 176.68 billion; 
particularly in the 2014-2015 winter-spring crop, 
more than 9,845 ha were damaged with a total 
loss of about VND 141.2 billion [16].

By 2016, drought became the most severe 
and widespread event in the entire study 
period. SPI-6 maps highlighted basin-wide 
rainfall deficits, while SMI-3 showed extensive 
soil moisture depletion, especially in midstream 
and downstream areas. SRI-6 and SGI-3 
emphasized severe shortages in streamflow 
and groundwater, with many districts recording 
persistently negative anomalies. The IDI 
indicated extreme drought conditions (IDI < 
-2) covering the upstream, midstream, and 
downstream sub-basins. This coincides with 
a strong El Nino year, which is consistent with 
observed meteorological records and reported 
socio-economic damages: In Gia Lai, drought 
affected 22,849 ha of crops, including rice, 
maize, coffee, and pepper, with total losses 
estimated at VND 372.8 billion. This confirms 
that 2016 was both the most intense and socio-
economically damaging drought on record [17].

In 2019, meteorological drought (SPI-6) was 
more localized, with deficits concentrated in 

the eastern and Southeastern districts such as 
Krông Pa and Ia Pa. SMI-3 indicated soil moisture 
decline extending into several midstream 
areas, while SRI-6 and SGI-3 reflected delayed 
impacts on runoff and groundwater, particularly 
downstream. Compared with 2016, the extent 
of extreme drought was smaller and mainly 
clustered in specific districts. The IDI clearly 
captured this pattern, showing severe drought 
conditions in a few localized hotspots rather 
than across the whole basin. Reported damages 
were also relatively limited, with 1,335.5 ha of 
crops affected and estimated losses of VND 16.6 
billion, confirming that the 2019 drought was 
regionally confined [18].

In 2020, drought severity and spatial coverage 
approached that of 2016, although with slightly 
lower extremes. SPI-6 indicated widespread 
rainfall deficits, while SMI-3 revealed severe 
soil moisture depletion across midstream and 
downstream areas. SRI-6 and SGI-3 further 
highlighted critical streamflow and groundwater 
shortages, especially in districts such as Mang 
Yang, K’Bang, An Khe. The IDI maps showed 
extensive areas experiencing severe to extreme 
drought, with a spatial footprint much larger than 
in 2015 and 2019, and only slightly less severe than 
in 2016. This is consistent with field reports from 
Gia Lai, where drought affected approximately 
9,116 ha of crops with total estimated damages 
of VND 188 billion, largely concentrated in coffee, 
pepper, and rice cultivation [19].

Overall, 2016 was the most extreme 
drought in terms of severity, extent, and socio-
economic damages, followed by 2020 with a 
similarly large spatial footprint, particularly in 
the midstream and downstream regions. The 
2015 and 2019 events were less severe, with 
2015 mainly affecting upstream districts and 
2019 characterized by localized drought in the 
Southeastern basin. The combination of model-
based assessments (DHI, IDI) with reported 
damage statistics demonstrates why these 
four years were selected as representative 
case studies: They illustrate different forms 
of drought propagation and intensity while 
capturing distinct socio-economic impacts 
within the Ba River Basin.
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Figure 6. Evolution of Drought Based on SPI-6, SRI-6, SMI-3, SGI-3, and IDI in Ia Pa District (1980-2023)

1 2 3 4 5
> 0 < 0 < -1 < -1.5 < -2 SPI-6 SRI-6 SMI-3 SGI-3 IDI

Normal Moderate 
Drought

Severe 
Drought

Extreme 
Drought

Exceptional 
Drought

Figure 7. The district-level drought indices for the Ba River Basin during the dry season in 2015, 2016, 2019, 2020
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Figure 8. Spatial distribution of the IDI across districts of the Ba River Basin during the dry season 
in 2015, 2016, 2019, 2020
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4. Conclusion
This study conducted a comprehensive 

assessment of drought and water security in 
the Ba River Basin by integrating a distributed 
hydrological model, multiple univariate drought 
indices, a copula-based integrated drought index 
(IDI), and risk-vulnerability analysis tools. The VIC 
model was developed and calibrated to simulate 
streamflow, soil moisture, surface runoff, and 
baseflow for 1980-2023. A key advance lies in 
explicitly incorporating reservoir operations, 
thus addressing a common limitation of earlier 
studies that often neglected the significant 
role of dams in shaping dry-season flows and 
downstream water availability.

On this modeling foundation, four univariate 
drought indices (SPI, SMI, SRI, SGI) were 
calculated and combined through a Clayton 
Copula to construct the IDI. Unlike single indices, 
the IDI effectively captured the sequential 
propagation of drought-from meteorological 
deficits (precipitation) through agricultural 
impacts (soil moisture decline) to hydrological 
stress (reduced runoff and groundwater). 
Case analyses of the 2015, 2016, 2019, and 
2020 droughts confirmed that the IDI reflects 
both the intensity and spatial distribution of 
compound drought impacts. In particular, 2016 

emerged as the most extreme drought in terms 
of basin-wide severity and socio-economic 
losses, followed by 2020, whereas 2015 and 
2019 were characterized by more localized 
drought hotspots.

Nevertheless, several limitations remain. 
First, the VIC model could not fully account for 
water abstractions due to data scarcity, which 
lowered calibration-validation performance 
in the reservoir-influenced period. Second, 
aggregation from gridded outputs to district-
level indicators may introduce smoothing 
errors. Third, while the Clayton Copula is well 
suited to lower-tail dependence, it has limited 
capacity to capture complex nonlinear and dual-
tail dependencies; future studies should explore 
more flexible structures such as empirical or 
vine copulas.

Based on these findings, three 
recommendations are made for the future 
studies. Improving water use datasets is essential 
for enhancing VIC reliability under reservoir 
regulation. Incorporating spatial downscaling, 
remote sensing, and high-resolution climate 
products would help reduce aggregation biases. 
Finally, adopting advanced copula families could 
better represent multivariate dependence and 
extremes, thereby strengthening compound 
drought risk assessments.
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