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Abstract: Drought is a complex natural hazard characterized by stochastic occurrence, wide-ranging
impacts, and sequential propagation across the hydrological cycle. This study proposes a copula-based
framework to construct an Integrated Drought Index (IDI) for the Ba River Basin, Viet Nam, combining
meteorological (SPIl), agricultural (SMI), and hydrological (SRI, SGI) drought dimensions. The VIC distributed
hydrological model was developed and calibrated for 1980-2023, explicitly incorporating the operation of
major reservoirs to better capture regulated flow regimes. Standardized drought indices were computed at
monthly timescales, and a Clayton Copula was applied to model lower-tail dependence among them, enabling
quantification of compound drought conditions. The resulting IDI was analyzed for four representative
drought years (2015, 2016, 2019, 2020), which correspond to major El Nino episodes associated with severe
rainfall deficits and socio-economic damages. Results show that the IDI effectively captures both the intensity
and spatial extent of drought propagation, with 2016 emerging as the most extreme basin-wide drought,
2020 showing similarly widespread impacts, and 2015 and 2019 characterized by more localized drought
hotspots. By integrating reservoir regulation, multi-source data, and copula-based dependence modeling,
this study provided a more holistic representation of compound drought risk in a socio-hydrologically
complex basin.
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1. Introduction and hydrological drought develops later,

Drought is widely recognized as one of the manifested as reduced streamflow, reservoir
storage, and groundwater recharge.

Traditional drought assessments have largely
relied on single indicators that capture only
one dimension of this process. For example,
the Standardized Precipitation Index (SPI)
reflects meteorological drought [3], whereas
the Standardized Runoff Index (SRI) and the
Standardized Groundwater Index (SGl) focus
on hydrological drought [4]. While such indices
are useful for monitoring specific components,
) _ o ) e they cannot fully capture the interconnected
is usually identified by sustained precipitation and evolving nature of drought. This limitation

deficits, agricultural drought emerges as soil has motivated the development of integrated
moisture becomes insufficient for crop needs, drought indices (IDI), which aim to combine
_— diverse sources of information into a more
Corresponding author: Do Thi Ngoc Bich comprehensive representation [5].

E-mail: bichdam555@gmail.com An effective IDI should do more than simply

most devastating natural hazards, exerting
profound impacts on ecosystems, agriculture,
water resources, and socioeconomic
development. Rather than being defined solely
as a precipitation deficit, drought represents
a multifaceted phenomenon with cascading
effects throughout the hydrological cycle [1].
In general, three principal types of drought are
distinguished: Meteorological, agricultural, and
hydrological drought [2]. Meteorological drought
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aggregate existing indices; it must reflect the
sequential propagation of drought. Typically,
drought begins as a meteorological anomaly,
spreads into the agricultural domain through soil
moisture depletion, and eventually manifests in
hydrological systems as declining streamflow
and groundwater levels [6]. By integrating
indicators such as SPI (precipitation), SMI (soil
moisture), SRI (runoff), and SGI (groundwater),
an IDI can provide insight into both the onset
and evolution of drought conditions.

Developing such an index, however, requires
careful consideration of interdependencies
among hydro-meteorological variables.
Precipitation, soil moisture, runoff, and
groundwater are inherently linked, with
feedbacks across different spatial and temporal
scales. Consequently, integration cannot rely on
simple linear averaging, as this may overlook
nonlinearities and tail dependencies where
extreme drought impacts occur. Methods such
as Principal Component Analysis (PCA) have
been applied to combine drought indicators, yet
they often assume linear correlation structures,
which may not adequately represent complex
hydrological relationships [7].

Copula theory provides a promising
alternative. By separating marginal distributions
from their dependence structure, copulas enable
flexible modeling of nonlinear associations and
allow explicit representation of tail dependence,
where co-occurring extremes are most critical
[8], [9]. This makes copulas particularly suitable
for constructing integrated drought indices, as
they can capture both the diversity of individual
indicators and the strength of their joint
behavior. Among copula families, the Clayton
copula is especially effective for modeling
lower-tail dependence, which is essential for
understanding the compounding impacts of
severe droughts.

Building an IDI using the Clayton copula
meets these requirements. By integrating SPI,
SMI, SRI, and SGI into a unified framework, the
approachaccountsfor nonlinearand asymmetric
dependence among drought indicators while
avoiding restrictive assumptions about their
marginal distributions. This enhances the
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reliability of drought monitoring compared
with traditional correlation-based methods.
Moreover, the ability of copula-based models
to characterize joint extremes strengthens their
capacity to identify critical drought conditions
and inform risk management.

Despite significant progress in drought
monitoring  worldwide, there remains a
considerable gap in the development and
application of integrated drought indices at
the basin scale in Viet Nam. Most existing
studies on the Ba River Basin have relied on
single drought indicators such as SPI or SRI,
which provide valuable information on specific
drought types but fail to represent the multi-
dimensional propagation and interactions among
meteorological, agricultural, and hydrological
droughts. Moreover, few attempts have been
made to adopt advanced statistical tools such
as copula functions to explicitly model nonlinear
and asymmetric dependencies among drought
indicators in this region. This limitation hinders
comprehensive drought risk assessment and the
design of effective water resources management
strategies under a changing climate. To address
these gaps, the present study aims to develop
an Integrated Drought Index (IDI) for the Ba River
Basinin Viet Nam using a copula-based framework.
Specifically, the Clayton copula is employed to
integrate four key drought indicators SPI, SM, SR,
and SGI representing meteorological, agricultural,
and hydrological droughts.

2. Data and Methods

2.1. Study area

The Ba River Basin has an elongated and
narrow shape with a total area of about 13,417
km2. It lies mainly within three provinces Gia
Lai, Dak Lak, and Phu Yen covering one city, two
towns, and 19 districts. The Ba River originates
from Ngoc Ro Mountain (1,549 m) in the Truong
Son Range. From its headwaters to An Khe,
the river flows Northwest-Southeast, then
shifts North-South, and after the Hinh River
confluence turns west-east before discharging
into the East Sea at the Da Rang estuary in Tuy
Hoa City, Phu Yen Province. The basin receives
an average annual rainfall of around 1,760 mm.




Due to the influence of the eastern Truong Son
rainfall regime, the wet season lasts from May
to December, contributing 78-82% of annual
rainfall, while the dry season contributes only
18-22%. Maximum rainfall usually occurs in
August, whereas the driest months are January
to February. Despite its relatively large size, the

basin has one of the sparsest rainfall and water
level monitoring networks in Viet Nam. There
are five major reservoirs in the basin: An Khe-
Ka Nak, Ayun Ha, Krong H’nang, Song Hinh,
and Song Ba Ha which are vital for hydropower
generation, irrigation, and water management
(Figure 1).
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Figure 1. Location, rivers, reservoirs and gauging stations in the Ba Basin, Viet Nam

2.2. Data

This study employs gauged streamflow
records for the period 1980-2023 were
obtained from the Viet Nam Meteorological

and Hydrological Administration (VMHA),
providing long-term observations of river
discharge. Precipitation data for the same

period were taken from the Viet Nam Gridded
Precipitation (VnGP) dataset [10], which has
been specifically developed and validated for
hydrometeorological applications in Viet Nam.
To capture atmospheric variables, we used

the ERA5 global reanalysis dataset (1980-
2023) produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF)
[11]. This dataset provides gridded information
on wind speed, evapotranspiration, and mean,
minimum, and maximum temperatures, which
are essential inputs for drought monitoring and
hydrological modeling.

Topographic information was derived
from the Advanced Land Observing Satellite
(ALOS) World 3D dataset (AW3D30), which
offers a Digital Elevation Model (DEM) with
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approximately 30-meter resolution, produced
by the Japan Aerospace Exploration Agency
(JAXA) Earth Observation Research Center
(EORC) in 2012 [12]. Soil characteristics were
obtained from the FAO-UNESCO Soil Map of
the World (SMW) [13], which provides spatially
distributed information on soil types and
properties. In addition, land use and land cover
patterns were derived from the Land Cover CCI
Product (ESA Version 2.0, 2017) [14].

2.3. Methods

2.3.1. VIC model

In this study, the Variable Infiltration
Capacity (VIC) model [15] is applied to simulate
hydrological processes in the Ba River Basin.
The VIC model was selected for several reasons.
First, it is a fully distributed, physically based
model that explicitly represents the spatial
heterogeneity of meteorological and surface
inputs. Second, as a land surface hydrological
model, it quantitatively represents the exchange
of water, energy, and momentum fluxes between
the land surface and the atmosphere. Third, the
model structure allows the inclusion of human
influences, such as reservoir operations and
land use/land cover changes, which are critical
for basin-scale applications.

The VIC framework typically consists of three
main components. The rainfall-runoff module
forms the core of the system, simulating the
interactions among climate forcings, land surface
characteristics, and hydrological responses.
It uses meteorological drivers together with
physiographic properties to produce gridded
estimates of surface runoff and baseflow. These
outputs are then aggregated by the routing
module to estimate streamflow at specified basin
outlets. Additionally, a calibration component is
incorporated to improve the accuracy of both
runoff generation and routing. While the MOEA
module is often employed for this purpose, in
the present study the SCE-UA (Shuffled Complex
Evolution-University of Arizona) optimization
algorithm is adopted instead of the NSGA multi-
objective genetic algorithm to achieve efficient
parameter estimation and calibration. In this
study, the Ba River Basin was discretized into a

54 || JOURNAL OF CLIMATE CHANGE SCIENCE
mmmmm || NO. 35 - SEP. 2025

VIC model grid with three soil layers at a spatial
resolution of 0.04°, resulting in 1,683 grid cells
(51 x 33), of which 752 cells fall within the basin
boundary.

In routing module, reservoir operation was
explicitly incorporated through two parameter
groups: (1) Reservoir location and (2) Reservoir
characteristics together with the operation rule
curves. Reservoir locations were integrated into
the model using GIS-based spatial referencing,
ensuring accurate representation of their
position within the river network. Reservoir
physical parameters (e.g., storage capacity,
release structures) and operating rules (e.g.,
flood control, irrigation, hydropower priorities)
were then embedded to govern inflow-outflow
relationships.

2.3.1. Development of IDI

Monthly time series of precipitation, soil
moisture, surface runoff, and baseflow were
extracted from the VIC simulations for each grid
cell. These outputs were then aggregated to the
district scale using area-weighted averaging to
generate consistent datasets for drought index
computation.

Four univariate drought indices were
derived: SPI (Standardized Precipitation Index),
SMI (Soil Moisture Index), SRI (Standardized
Runoff Index), and SGI (Standardized
Groundwater Index). Each index was calculated
at multiple accumulation timescales to capture
the response dynamics of different hydrological
components: 1-3-6-12 months for SPI, SRI, and
SGI, and 1-6 months for SMI.

To integrate these indicators, we adopted
the copula-based approach proposed by Shah
and Mishra (2019) [5]. As drought propagates
sequentially through the hydrological cycle
from meteorological deficits (SPI) to soil
moisture depletion (SMI), reduced runoff
(SRI), and groundwater decline (SGI) lagged
correlations were first assessed. Pearson
correlation analysis was conducted to identify
the most representative timescales for each
index, ensuring that the selected combinations
reflect the strongest interdependencies across
drought types.




The joint dependence structure among
SPI, SMI, SRI, and SGI was modeled using the
Clayton Copula, which is particularly effective in
capturing lower-tail dependence representing
simultaneous extreme deficits across variables.
In this framework, the standardized indices were
first transformed into cumulative probabilities
through the standard normal cumulative
distribution function. These probabilities were
then combined using the Clayton Copula:

C (ulrquu3!u4! 9)

= (ul_e + uz_e + u3_‘9
-1

+ U4_9 - d + 1) 6

(1)

Where, u, denotes the marginal cumulative
probability of each drought index, d=4 is the
number of variables, and 9>0is the dependence
parameter estimated by maximum likelihood.

The resulting joint cumulative distribution
function (Joint CDF) quantifies the probability
of concurrent drought conditions. A lower Joint
CDF indicates a higher likelihood of simultaneous
severe deficits, while higher values imply wetter
conditions. To enhance interpretability, Joint
CDF values were converted back into a standard
normal score using the inverse normal function,
yielding the Integrated Drought Index (IDI):

IDI= ¢ (JointCDF) (2)

The IDI time series thus provides a
comprehensive measure of drought, integrating
meteorological, agricultural, and hydrological
dimensions. Negative IDI values indicate drought,
positive values indicate wet conditions, and values
near zero correspond to near-normal states.

The research method schematic of this study
is depicted in Figure 2.
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Figure 2. Research method schematic

3. Results and discussion
3.1. Calibration and validation of the VIC model

3.1.1. Calibration period (1995-2001)

The VIC model was first calibrated for the
pre-dam period (1995-2001) at An Khe and
Cung Son stations. Six soil parameters (bin, Ds,
Dmax, Ws, D2, D3) were optimized to reproduce
the observed streamflow. The performance of

the model was evaluated using the statistical
indicators NSE, RMSE, Pbias, and R2. The results
indicate that the model achieved satisfactory
performance at both stations, with NSE values
of 0.80 at An Khe and 0.84 at Cung Son, and high
coefficients of determination (R%>0.90). The
calibration statistics are presented in Table 1,
while the simulated and observed hydrographs
during the calibration period are illustrated in
Figure 3.
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Table 1. The NSE, R?>, RMSE, BIAS index stations in the calibration period 1995-2001

Hydrological station NSE RMSE Pbias R?
An Khe 0.80 26.27 32.46 0.95
Cung Son 0.84 155.33 29.71 0.93

An Khe Station

——  Observed discharge
——  Simulated discharge

Discharge (m%/s)

1995 1996 1997 1998 1999 2000 2001 2002
Time

Cung Son Station

- Observed discharge
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2000
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500
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Figure 3. The simulated and observed monthly discharge at An Khe and Cung Son stations in the calibration
period 1995-2001

3.1.2. Validation period (2002-2008)

Model validation was carried out for the
subsequent period (2002-2008), prior to the
operation of large reservoirs in the basin. Using
the calibrated parameters, the VIC model was
applied to both An Khe and Cung Son stations.
The results (see Table 2) show that model
performance remained acceptable, with NSE

of 0.77 at An Khe and 0.76 at Cung Son, and R?
values of 0.96 for both stations. These results
confirm the model’s robustness in reproducing
observed monthly streamflow. The comparison
between observed and simulated discharge
for the validation period is illustrated in Figure
4, demonstrating good agreement in both
magnitude and seasonal variation.

Table 2. The NSE, R?, RMSE, BIAS index stations in the validation period 2002-2008

Hydrological station NSE RMSE Pbias R?
An Khe 0.77 23.93 35.19 0.96
Cung Son 0.76 110.68 32.08 0.96
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Figure 4. The simulated and observed monthly discharge at An Khe and Cung Son stations in the validation
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3.1.3. Validation for the post-dam period (2009-2022)

The calibrated parameters were further
applied to the post-dam period (2009-2022),
when major reservoirs became operational
across the Ba River basin. The performance
statistics (Table 3) show a reduction in model

efficiency, with NSE values declining to 0.64 at An
Khe and 0.60 at Cung Son, and increased RMSE
and Pbias values. This degradation reflects the
impact of human interventions. Nevertheless,
the model was still able to reproduce the general
discharge patterns, as shown in Figure 5.

Table 3. The NSE, R?>, RMSE, BIAS index stations in the validation period 2009-2022

Hydrological station NSE RMSE Pbias R?
An Khe 0.64 21.30 40.82 0.72
Cung Son 0.60 206.51 42.04 0.71
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Figure 5. The simulated and observed monthly discharge at An Khe and Cung Son stations in the validation
period 2009-2022

3.2. Evaluation of IDI

Fromthe monthly time series of precipitation,
runoff, soil moisture, and baseflow (1980-2023),
four standardized drought indices (SPI, SRI, SMI,
and SGI) were derived for each district within
the Ba River basin. Based on correlation analysis,
the study identified an optimal set of indices to
be used as inputs for the Copula model:

SPI-6: Standardized Precipitation Index with
a 6-month accumulation period.

SRI-6: Standardized Runoff Index with a
6-month accumulation period.

SMI-3: Soil Moisture Index with a 3-month
accumulation period.

SGI-3: Standardized Groundwater Index with
a 3-month accumulation period.

Notably, both SMI and SGI were incorporated
with a one-month lag relative to SPI and SRI.
The selection of this combination followed
the principle of maximizing cross-correlation
among indices, thereby ensuring that the
Copula framework could effectively integrate
drought signals across different hydrological

components. Correlation analysis revealed
that the strongest interdependencies occurred
at specific accumulation periods, which
did not necessarily coincide across indices.
Identifying this optimal configuration was
therefore essential for selecting inputs to the
Copula model. By capturing highly correlated
signals, the Copula model can more accurately
represent the dependence structure among
indices, ultimately yielding a composite drought
index (IDI) that is both statistically robust and
physically meaningful.

The computation of the four univariate
drought indices (SPI-6, SRI-6, SMI-3, SGI-3)
together with the composite IDI provides a
comprehensive view of drought evolution in the
Ba River Basin. The analysis in this study focuses
on assessing integrated drought during the dry
season in 2015, 2016, 2019, 2020. These periods
were selected because they coincide with
strong El Nino events that caused substantial
rainfall deficits and elevated temperatures
across Viet Nam. Historical records confirm
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that these episodes led to widespread water
shortages, agricultural losses, and hydrological
stress within the Ba River Basin. The results for
the most severe drought months across four
major drought episodes show that IDI effectively
captures both the intensity and spatial extent of
drought impacts at the district scale (Figure 6-8).

In 2015, the meteorological drought index
(SPI-6) indicated rainfall deficits mainly in the
upstream areas such as K'Bang and some
midstream districts. The soil moisture index
(SMI-3) also reflected soil water shortages in
these regions, although the extent of drought
impacts had not yet spread across the basin. The
runoff (SRI-6) and groundwater (SGI-3) indices
showed only moderate hydrological impacts in
the downstream areas. The integrated drought
index (IDI) suggested localized severe drought
in upstream and midstream areas, but without
a wide spatial extent. This pattern is consistent
with reported damages in Gia Lai Province, where
drought in 2015 affected more than 12,803 ha of
crops with estimated losses of VND 176.68 billion;
particularly in the 2014-2015 winter-spring crop,
more than 9,845 ha were damaged with a total
loss of about VND 141.2 billion [16].

By 2016, drought became the most severe
and widespread event in the entire study
period. SPI-6 maps highlighted basin-wide
rainfall deficits, while SMI-3 showed extensive
soil moisture depletion, especially in midstream
and downstream areas. SRI-6 and SGI-3
emphasized severe shortages in streamflow
and groundwater, with many districts recording
persistently negative anomalies. The IDI
indicated extreme drought conditions (IDI <
-2) covering the upstream, midstream, and
downstream sub-basins. This coincides with
a strong El Nino year, which is consistent with
observed meteorological records and reported
socio-economic damages: In Gia Lai, drought
affected 22,849 ha of crops, including rice,
maize, coffee, and pepper, with total losses
estimated at VND 372.8 billion. This confirms
that 2016 was both the most intense and socio-
economically damaging drought on record [17].

In 2019, meteorological drought (SPI-6) was
more localized, with deficits concentrated in
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the eastern and Southeastern districts such as
Kréng Pa and la Pa. SMI-3 indicated soil moisture
decline extending into several midstream
areas, while SRI-6 and SGI-3 reflected delayed
impacts on runoff and groundwater, particularly
downstream. Compared with 2016, the extent
of extreme drought was smaller and mainly
clustered in specific districts. The IDI clearly
captured this pattern, showing severe drought
conditions in a few localized hotspots rather
than across the whole basin. Reported damages
were also relatively limited, with 1,335.5 ha of
crops affected and estimated losses of VND 16.6
billion, confirming that the 2019 drought was
regionally confined [18].

In 2020, drought severity and spatial coverage
approached that of 2016, although with slightly
lower extremes. SPI-6 indicated widespread
rainfall deficits, while SMI-3 revealed severe
soil moisture depletion across midstream and
downstream areas. SRI-6 and SGI-3 further
highlighted critical streamflow and groundwater
shortages, especially in districts such as Mang
Yang, K’'Bang, An Khe. The IDI maps showed
extensive areas experiencing severe to extreme
drought, with a spatial footprint much larger than
in2015and 2019, and onlyslightly less severe than
in 2016. This is consistent with field reports from
Gia Lai, where drought affected approximately
9,116 ha of crops with total estimated damages
of VND 188 billion, largely concentrated in coffee,
pepper, and rice cultivation [19].

Overall, 2016 was the most extreme
drought in terms of severity, extent, and socio-
economic damages, followed by 2020 with a
similarly large spatial footprint, particularly in
the midstream and downstream regions. The
2015 and 2019 events were less severe, with
2015 mainly affecting upstream districts and
2019 characterized by localized drought in the
Southeastern basin. The combination of model-
based assessments (DHI, IDI) with reported
damage statistics demonstrates why these
four years were selected as representative
case studies: They illustrate different forms
of drought propagation and intensity while
capturing distinct socio-economic impacts
within the Ba River Basin.
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Figure 6. Evolution of Drought Based on SPI-6, SRI-6, SMI-3, SGI-3, and IDI in la Pa District (1980-2023)
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Figure 7. The district-level drought indices for the Ba River Basin during the dry season in 2015, 2016, 2019, 2020
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Figure 8. Spatial distribution of the IDI across districts of the Ba River Basin during the dry season
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4. Conclusion

This study conducted a comprehensive
assessment of drought and water security in
the Ba River Basin by integrating a distributed
hydrological model, multiple univariate drought
indices, a copula-based integrated droughtindex
(IDI), and risk-vulnerability analysis tools. The VIC
model was developed and calibrated to simulate
streamflow, soil moisture, surface runoff, and
baseflow for 1980-2023. A key advance lies in
explicitly incorporating reservoir operations,
thus addressing a common limitation of earlier
studies that often neglected the significant
role of dams in shaping dry-season flows and
downstream water availability.

On this modeling foundation, four univariate
drought indices (SPI, SMI, SRI, SGI) were
calculated and combined through a Clayton
Copulato construct the IDI. Unlike single indices,
the IDI effectively captured the sequential
propagation of drought-from meteorological
deficits (precipitation) through agricultural
impacts (soil moisture decline) to hydrological
stress (reduced runoff and groundwater).
Case analyses of the 2015, 2016, 2019, and
2020 droughts confirmed that the IDI reflects
both the intensity and spatial distribution of
compound drought impacts. In particular, 2016

emerged as the most extreme drought in terms
of basin-wide severity and socio-economic
losses, followed by 2020, whereas 2015 and
2019 were characterized by more localized
drought hotspots.

Nevertheless, several limitations remain.
First, the VIC model could not fully account for
water abstractions due to data scarcity, which
lowered calibration-validation performance
in the reservoir-influenced period. Second,
aggregation from gridded outputs to district-
level indicators may introduce smoothing
errors. Third, while the Clayton Copula is well
suited to lower-tail dependence, it has limited
capacity to capture complex nonlinear and dual-
tail dependencies; future studies should explore
more flexible structures such as empirical or
vine copulas.

Based on these findings, three
recommendations are made for the future
studies. Improving water use datasetsis essential
for enhancing VIC reliability under reservoir
regulation. Incorporating spatial downscaling,
remote sensing, and high-resolution climate
products would help reduce aggregation biases.
Finally, adopting advanced copula families could
better represent multivariate dependence and
extremes, thereby strengthening compound
drought risk assessments.
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